Research Report

Polysyllabic pseudo-word processing in reading and lexical decision: Converging evidence from behavioral data, connectionist simulations and functional MRI

S. Valdoisa,⁎, S. Carbonnela,b, A. Jupharda,b, M. Baciua, B. Ansa, C. Peyrina, C. Segebarthc

aLaboratoire de Psychologie et Neurocognition, UMR 5105 CNRS, Université Pierre Mendès France, BP 47, 38040 Grenoble cedex, France
bUniversité de Savoie, BP 1104, 73011 Chambéry cedex, France
cINSERM U594, Grenoble, F-38043 France, Université Joseph Fourier, Grenoble, F-38043 France

ARTICLE INFO

Article history:
Accepted 7 February 2006
Available online 30 March 2006

Keywords:
Reading
Lexical decision
Pseudo-word
Length effect
fMRI
Connectionist modelling

ABSTRACT

The cognitive mechanisms involved in polysyllabic pseudo-word processing—and their neurobiological correlates—were studied through the analysis of length effects on French words and pseudo-words in reading and lexical decision. Connectionist simulations conducted on the ACV98 network (Ans, B., Carbonnel, S., Valdois, S., 1998. A connectionist multiple-trace memory model for polysyllabic word reading. Psychol. Rev. 105, 678–723) paralleled the behavioral data in showing a strong length effect on naming latencies for pseudo-words only and the absence of length effect for both words and pseudo-words in lexical decision. Length effects in reading were characterized at the neurobiological level by a significant and specific activity increase for pseudo-words as compared to words in the right lingual gyrus (BA 19), the left superior parietal lobule and precuneus (BA7), the left middle temporal gyrus (BA21) and the left cerebellum. The behavioral results suggest that polysyllabic pseudo-word reading mainly relies on an analytic procedure. At the biological level, additional activations in visual and visual attentional brain areas during long pseudo-word reading emphasize the role of visual and visual attentional processes in pseudo-word reading. The present findings place important constraints on theories of reading in suggesting the involvement of a serial mechanism based on visual attentional processing in pseudo-word reading.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The cognitive mechanisms underlying word recognition and reading have been intensively studied in recent years together with their cerebral correlates. A number of theoretical models—as the dual-route model (Coltheart et al., 1993, 2001), the PDP connectionist models (Harm and Seidenberg, 1999; Plaut et al., 1996; Seidenberg and McClelland, 1989) or the multitrace memory model (Ans et al., 1998)—based on distinct hypotheses about the structure of the cognitive reading system have been proposed to account for reading performance. However, most neuro-imaging data have been carried out within the dual-route framework (Jobard et al., 2003; Price et al., 2003). Through the analysis of length effects in reading...
and lexical decision, the current paper shows evidence that,
apart from dual-route models, connectionist models also
provide a theoretical framework for the investigation of the
neurological correlates of the reading system.

Our aim in the present paper was to study the cognitive
mechanisms specifically involved in the processing of
polyisyllabic pseudo-words and to identify their neurobiolog-
ical correlates. Length effects on words and pseudo-words in
reading and lexical decision were studied for this purpose.
Several experimental studies have investigated length
effects in reading and/or lexical decision (Balota et al.,
2004; Forster and Chambers, 1973; Hudson and Bergman,
1985; Klapp et al., 1973; Plaut, 1998; Spieler and Balota, 1997;
Spoehr and Smith, 1973; Ziegler et al., 2001). In reading,
length effect seems to be modulated by word frequency and
varying according to the lexicality of the item to be read: an
effect of number of syllables has been reported for low
frequency words but not for high frequency words (Content
and Peerenman, 1993; Ferrand, 2000; Ferrand and New, 2003;
Jared and Seidenberg, 1990; Mason, 1978). Strong length
effects on naming latencies were consistently reported for
pseudo-words (Ans et al., 1998; Mason, 1978; Ferrand, 2000;
Ferrand and New, 2003; Weekes, 1997). A few data further
suggest that length effects differentially affect brain activity
during word and pseudo-word processing in reading (Baciu
et al., 2001). With respect to lexical decision, no syllable
length effect was reported for either words or pseudo-words
(Ferrand and New, 2003; Frederiksen and Kroll, 1976;
Richardson, 1976; see however New et al., submitted for
publication).

The study was conducted within the framework of the
connectionist multitrace memory model for polysyllabic
word reading (Ans et al., 1998). The model postulates that
two types of reading procedures, a global and an analytic
procedure, are required for processing all kinds of letter
strings. In contrast to the dual-route model, however, the
two procedures operate according to a common set of
computational principles and they do not work in parallel.
Global processing always proceeds first, the analytic proce-
dure applying only secondarily when global processing has
failed. An orthographic and a phonological output are
simultaneously generated following global processing. The
phonological output is accepted as the global pronunciation
of the input string if the orthographic output generated
during processing is strictly identical to the orthographic input.
When the two orthographic patterns differ, then the
phonological output is inhibited and the system shifts in
analytic mode. The system then processes the initial part of
the input string which has been accurately recreated in
output and processing is sequentially reiterated until the
end of the sequence.

The two procedures mainly differ in the kind of visual
attentional processing they involve. The whole orthographic
object forms the focal window in global processing, whereas
the visual attentional window is reduced to parts of the
orthographic sequence, typically syllables, in analytic pro-
cessing. Although the two procedures are not a priori
dedicated to the processing of a particular type of letter
string (real word or pseudo-word), it happens that most
familiar words are processed as a whole, whereas global
processing typically fails for pseudo-words. The system then
shifts in the analytic mode and the pseudo-word is sequentially processed. The model thus does not predict
any syllable length effect in familiar word naming, but a
strong syllable length effect is expected in pseudo-word
naming.

As all cognitive models, the ACV98 theoretical framework
does not make clear-cut predictions at the neural level.
However, one might expect that a similar network of cerebral
regions should be activated during word naming whatever
their length, if all familiar words were read globally. In
contrast, cerebral activation should differ as a function of
pseudo-word length. In the analytic processing of polysyllabic
pseudo-words, each new syllable requires a new visual
attentional capture for its pronunciation to be computed.
Accordingly, the higher the number of syllables of a pseudo-
word, the stronger should be the brain activation in the
cerebral regions involved in visual and visual attentional
processing.

The predictions are quite different with respect to
lexical decision. Indeed, a decision about the familiarity
of the input string is made on the basis of the ortho-
graphic output generated in global mode. If this ortho-
graphic output is strictly identical to the orthographic input,
then a Yes response will follow. A No decision will
be made when the orthographic output differs from the
orthographic input. It follows that lexical decision only
depends on processing in global mode, so that no syllable
length effect should affect response latencies whatever the
items’ length or lexicality (words or pseudo-words). Thus,
no additional brain regions should be activated when
processing longer items as compared to shorter ones in
lexical decision.

In the present study, the ACV98’s predictions have been
assessed using both behavioral and brain activation mea-
sures. Simulations were further conducted in order to check
the theoretical predictions of the model. Experiment 1 used
behavioral measures—reaction times (RTs) and error rates—
to assess length effects in reading and lexical decision. The
participants were presented with 72 words and 72 pseudo-
words mixed with fillers. The experimental items varied in
length from one to three syllables and from 4 to 11 letters.
Two groups of young adults participated in the experiment:
the first group was assessed in reading, the second in lexical
decision. In reading, the participants were asked to read
aloud the stimuli as quickly and as accurately as possible. In
lexical decision, they had to judge whether or not each
stimulus was a real French word. Reaction times and
accuracy of response were recorded for each stimulus.
Simulations of the reading and lexical decision performance
were further conducted on the ACV98 network using the
same set of items.

Experiment 2 assessed length effects using the event-
related fMRI while participants performed the same reading
and lexical decision tasks. Twenty healthy volunteers were
examined: twelve during reading, eight during lexical
decision. All were right-handed native French speakers
with good reading level and normal or corrected to normal
vision. The event-related fMRI paradigm (ER-fMRI) was used
because this technique allows mixing several types of
stimuli. Thus, it was possible to present within the same functional scan six types of stimuli (words and pseudo-words composed of one, two or three syllables). During the fMRI session, the participants belonging to the “reading” group were asked to read each item internally, without articulating or vocalizing.

2. Results

2.1. Experiment 1 (behavioral data)

2.1.1. Reaction time analyses

Reaction times (RTs) for the experimental words and pseudo-words were analyzed, and those for the items (7.7%) yielding erroneous responses or recording errors were discarded. Mean RTs were analyzed by participants (F1) and by items (F2). An ANOVA including Task (reading or lexical decision) as between-subject factor, and Lexicality (word or pseudo-word) and Length (1-, 2- or 3-syllables) as within-subject factors was used in the analysis. The mean RTs recorded in reading and lexical decision for words and pseudo-words of 1, 2 and 3 syllables are presented in Fig. 1A.

In reading, the analysis revealed a main lexicality effect on naming latencies. RTs were 162.1 ms longer on average for pseudo-words (F1(1,42) = 194.15, MSE = 4466.87, \(P < 0.00001 \); F2(1,120) = 432.16, MSE = 1945.04, \(P < 0.00001 \)). Length effect interacted with lexicality (F1(2.84) = 42.45, MSE = 1112.22, \(P < 0.00001 \); F2(2,120) = 22.9, MSE = 1945.04, \(P < 0.00001 \)). A highly significant Length by Lexicality interaction was obtained when the analysis was restricted to 1- to 3-syllable items (F1(1,42) = 55.44, MSE = 1594.02, \(P < 0.00001 \); F2(1,120) = 43.08, MSE = 1945.04, \(P < 0.00001 \)). Planned comparisons revealed that naming RTs were slightly longer for 3-syllable words than for 1-syllable words (diff = 30.82 ms; F1(1,42) = 21.38, MSE = 488.52, \(P < 0.00004 \); F2(1,120) = 5.56, MSE = 1945.04, \(P < 0.00001 \)). In contrast, 3-syllable pseudo-word naming yielded far longer latencies than 1-syllable pseudo-word naming (diff = 157.58 ms; F1(1,42) = 89.84, MSE = 3040.14, \(P < 0.00001 \); F2(1,120) = 135.48, MSE = 1945.04, \(P < 0.00001 \)). Overall, the present findings show far stronger length effects on naming latency for pseudo-words than for words.

In lexical decision, the analysis revealed a main lexicality effect of 84.6 ms (F1(1,42) = 52.84, MSE = 4466.87, \(P < 0.00001 \); F2(1,120) = 96.55, MSE = 2227.32, \(P < 0.00001 \)). A marginally significant interaction was found between length and lexicality when the analysis included the three length levels (F1(2,84) = 3.2, MSE = 1112.22, \(P < 0.05 \); F2(2,120) = 1.58, MSE = 2227.32, \(P = 0.21 \)). As for words, length effect was significant by subjects only (F1(2,84) = 9.6, MSE = 516.6, \(P < 0.0002 \); F2(2,120) = 2.69, MSE = 2227.32, \(P = 0.08 \)); the effect

![Fig. 1](image-url) - Mean naming latencies and reaction times obtained in reading and lexical decision for words and pseudo-words. (A) Experimental data; (B) simulations. Error number is indicated in parentheses; bars indicate standard error.
was significant by subjects and by items for the pseudo-words (F1(2,84) = 9.02, MSE = 1944.73, P < 0.0003; F2(2,120) = 7.93, MSE = 2227.32, P < 0.0006). The interaction was not significant when contrasting the 1-3 length levels (F1(1,42) = 1.65, MSE = 1594.02, P = 0.20; F2(1,120) = 0.85, MSE = 2227.32, P = 0.36). Mean RTs between 1- and 3-syllable items differed by 29.56 ms for the words and 51.45 ms for the pseudo-words. In lexical decision, the overall results thus show that, even if a slight length effect is observed for both words and pseudo-words, this effect is similar for the two types of items.

In summary, length has a similar and slight effect on RTs for both words and pseudo-words in lexical decision whereas the effect is far stronger for pseudo-words than for words in reading. This is supported by a very significant second order Length × Lexicality × Task interaction (F1(2,84) = 13.62, MSE = 1112.22, P < 0.00001; F2(2,120) = 8.61, MSE = 1756.39, P < 0.0004). Finally, the Length (1–3) × Task interaction was found to be non-significant for words (F1 < 1 and F2 < 1), suggesting similar processing in the two tasks. In contrast, the interaction was highly significant for pseudo-words (F1(4,88) = 20.38, MSE = 3040.14, P < 0.0006; F2(1,120) = 33.71, MSE = 1756.39, P < 0.00001) as expected if different procedures were involved in the two tasks.

2.1.2. Error analysis

Fig. 1A shows that error rate is higher for pseudo-words than for words in the two tasks, but this difference only reaches significance in reading in the by-subjects analysis (F1(1,42) = 4.62, MSE = 25.11, P < 0.05). This trend is similar to that found with respect to RTs. Moreover, the error rate pattern is in no way the reverse of the RTs pattern in either task, thus showing the absence of trade-off between RTs and error rates.

2.1.3. Simulations

Simulations were conducted on the ACV98 network in both reading and lexical decision (cf. Fig. 1B). The indicator used in the present simulations to estimate word naming latencies was the same as in previous simulations reported by Ans et al. (1998). Time needed to clean up the noisiest phonological cluster was used as an indicator of naming latency. The simulation was run on a set of 71 words corresponding to the experimental words used in Experiment 1 minus the word “trajectoire” which was not part of the model’s lexical database (words on which the model was trained did not exceed 10 letters). As shown in Fig. 1B, the mean naming latencies were 20.99 (range 0.88–90.66) for 1-syllable words, 19.9 (range 1.26–95.02) for 2-syllable words and 22.62 (range 1.53–125.10) for 3-syllable words. The mean naming latencies did not differ significantly as a function of word length (all Fs < 1). All words were read accurately. Results of the simulations thus parallel the behavioral data in showing the absence of length effect on word naming latencies.

Pseudo-word naming latencies could not be estimated using the same indicator as for real words since pseudo-word latencies mainly reflect the number of attentional captures required for analytic processing to be completed. Thus and following Plaut (1998), the number of attentional captures required to generate a correct pronunciation was taken as the most appropriate estimation of pseudo-word naming latencies. One-syllable pseudo-word reading was completed after 3.05 attentional captures on average, whereas 3.68 and 4.58 attentional captures were required for 2 and 3-syllable pseudo-words respectively. The simulation results were characterized by a main length effect (F(2,54) = 6.44, MSE = 1.73, P < 0.004) with a higher number of attentional captures for 3-syllable pseudo-words as compared to 1-syllable (F(1,54) = 12.76, MSE = 1.73, P < 0.0008) or 2-syllable (F(1,54) = 4.38, MSE = 1.73, P < 0.05) pseudo-words (cf. Fig. 1B). The difference between 1- and 2-syllable pseudo-words did not reach significance (F(1,54) = 2.18, MSE = 1.73, P = 0.15).

With respect to lexical decision, the indicator of reaction times was the same as the indicator of word naming latency except that time to clean up was estimated at the output orthographic level. As for phonological responses, the output orthographic echo has to be entirely stabilized (that is, all the clusters have to be clean) before a comparison can be made between the orthographic input and the orthographic output. It was assumed that response latency was determined by the orthographic cluster which had the longest clean-up time. To check the absence of any length effect in lexical decision, we submitted 139 items used in Experiment 1 to the ACV98 network (1 word and 4 pseudo-words were discarded because they exceeded 10 letters). The network yielded 5.04% erroneous decisions. As shown in Fig. 1B, RTs were far longer for pseudo-words than for words (F(1,102) = 27.54, MSE = 0.1482, P < 0.00001). The analysis revealed the absence of any length effect for either words or pseudo-words (all Fs < 1) and the absence of Lexicality by Length interaction (F < 1). Overall and as expected, simulations showed the absence of length effect for words in both reading and lexical decision whereas they highlighted a strong length effect for pseudo-words in the reading task only.

2.2. Experiment 2 (neuroimaging data)

Results of the contrasts between conditions are presented in Table 1. Each condition (type of item) was contrasted to the control condition (fixation cross), then long items were contrasted to short ones and vice versa. In order to assess a significant length effect during pseudo-word reading as compared to length effect during word reading, the following contrast was calculated: [(3-syllable pseudo-words vs. 1-syllable pseudo-words) vs. (3-syllable words vs. 1-syllable words)] masked inclusively by [3-syllable pseudo-words vs. 1-syllable pseudo-words]. The inclusive masking was performed in order to avoid activations which could in fact reflect “deactivations” provided by the contrast (3-syllable pseudo-words vs. 1-syllable pseudo-words).

1 Additional naming latencies related to phonological clean-up time at each step of analytic processing would be insignificant as compared to the time needed for each new attentional capture.

2 In Fig. 1B, the number of attentional captures has been arbitrarily multiplied by 7 to allow comparison with the word latency indicator.
Table 1 – Anatomical regions activated during reading and lexical decision for words and pseudo-words versus fixation cross and for the relevant contrasts

<table>
<thead>
<tr>
<th>Contrasts (P < 0.05 corr)</th>
<th>Lexical decision activated regions</th>
<th>Talairach coordinates (x, y, z)</th>
<th>P</th>
<th>Z</th>
<th>T</th>
<th>Reading activated regions</th>
<th>Talairach coordinates (x, y, z)</th>
<th>P corr</th>
<th>T</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 vs. fixation</td>
<td>Left supramarginal gyrus (BA 40)</td>
<td>−51,−28,52</td>
<td>0.000 (>8)</td>
<td>10.43</td>
<td>Left inferior temporal gyrus (BA 37)</td>
<td>−40,−66,−5</td>
<td>0.000</td>
<td>8.56</td>
<td>(>8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left infero-occipital gyrus (BA 18)</td>
<td>−32,−81,4</td>
<td>0.000 (>8)</td>
<td>9.07</td>
<td>Left medial occipital gyrus (BA 19)</td>
<td>−44,−70,−5</td>
<td>0.000</td>
<td>7.42</td>
<td>(7.30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left inferior frontal gyrus (BA 45, 47)</td>
<td>−44,32,17</td>
<td>0.000 (6.04)</td>
<td>6.13</td>
<td>Left supramarginal gyrus (BA 40)</td>
<td>−28,−56,53</td>
<td>0.000</td>
<td>5.64</td>
<td>(5.59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right middle frontal gyrus (BA 10)</td>
<td>44,44,21</td>
<td>0.000 (5.77)</td>
<td>5.86</td>
<td>Right cerebellum</td>
<td>44,−56,−22</td>
<td>0.000</td>
<td>5.63</td>
<td>(5.58)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left supplementary motor area (BA 6)</td>
<td>−4,18,50</td>
<td>0.000 (5.75)</td>
<td>5.84</td>
<td>Left cerebellum</td>
<td>−16,−59,−18</td>
<td>0.003</td>
<td>5.21</td>
<td>(5.17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left middle temporal gyrus (BA 21)</td>
<td>−51,−35,−2</td>
<td>0.002 (5.27)</td>
<td>5.34</td>
<td>Right supramarginal gyrus (BA 40)</td>
<td>−24,−60,44</td>
<td>0.004</td>
<td>5.11</td>
<td>(5.07)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right angular gyrus (BA 39)</td>
<td>40,−58,12</td>
<td>0.009 (4.91)</td>
<td>4.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW1 vs. fixation</td>
<td>Left precentral gyrus (BA 4)</td>
<td>−44,−17,56</td>
<td>0.000 (>8)</td>
<td>9.98</td>
<td>Right medial occipital gyrus (BA 19)</td>
<td>40,−81,4</td>
<td>0.000</td>
<td>5.87</td>
<td>(5.81)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left inferior frontal gyrus (BA 44)</td>
<td>−51,5,32</td>
<td>0.000 (7.11)</td>
<td>7.27</td>
<td>Left inferior temporal gyrus (BA 37)</td>
<td>−40,−66,−5</td>
<td>0.000</td>
<td>5.78</td>
<td>(5.72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right cerebellum</td>
<td>20,−48,−19</td>
<td>0.000 (6.80)</td>
<td>6.94</td>
<td>Left prefrontal cortex (BA 6)</td>
<td>−48,−2,37</td>
<td>0.013</td>
<td>4.84</td>
<td>(4.81)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left fusiform gyrus (BA 37, 19)</td>
<td>−32,−81,4</td>
<td>0.000 (6.78)</td>
<td>6.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplementary motor area (BA 6)</td>
<td>0,6,50</td>
<td>0.000 (5.67)</td>
<td>5.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right infero-medial occipital gyrus (BA 18, 19)</td>
<td>40,−74,−1</td>
<td>0.000 (5.61)</td>
<td>5.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right supramarginal gyrus (BA 40)</td>
<td>44,−33,48</td>
<td>0.000 (5.53)</td>
<td>5.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left putamen</td>
<td>−16,4,4</td>
<td>0.001 (5.42)</td>
<td>5.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anterior cingulated gyrus (BA 32)</td>
<td>0,21,36</td>
<td>0.012 (4.84)</td>
<td>4.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2 vs. fixation</td>
<td>Left primary sensory-motor cortex (BA 4, 3, 2, 1)</td>
<td>−51,−25,52</td>
<td>0.000 (7.50)</td>
<td>7.70</td>
<td>Left middle and inferior occipital gyrus (BA 19, 18)</td>
<td>−36,−67,−9</td>
<td>0.000</td>
<td>8.72</td>
<td>(>8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right cerebellum</td>
<td>28,−51,−18</td>
<td>0.000 (7.43)</td>
<td>7.62</td>
<td>Left premotor cortex (BA 6)</td>
<td>−44,−1,51</td>
<td>0.000</td>
<td>7.24</td>
<td>(7.13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left cerebellum</td>
<td>−32,−48,−19</td>
<td>0.000 (6.37)</td>
<td>6.49</td>
<td>Right medial occipital gyrus (BA 19)</td>
<td>36,−81,13</td>
<td>0.000</td>
<td>7.05</td>
<td>(6.95)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left middle occipital gyrus (BA 19)</td>
<td>−28,−81,9</td>
<td>0.000 (6.26)</td>
<td>6.37</td>
<td>Left superior parietal lobule (BA 7)</td>
<td>−24,−59,58</td>
<td>0.000</td>
<td>6.52</td>
<td>(6.44)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right cerebellum</td>
<td>55,2,32</td>
<td>0.000 (5.73)</td>
<td>5.73</td>
<td>Right prefrontal cortex (BA 6)</td>
<td>−40,−63,−9</td>
<td>0.000</td>
<td>8.16</td>
<td>(>8)</td>
<td></td>
</tr>
<tr>
<td>PW2 vs. fixation</td>
<td>Left primary sensory-motor cortex (BA 4, 3, 2, 1)</td>
<td>−51,−28,52</td>
<td>0.000 (>8)</td>
<td>9.89</td>
<td>Left inferior temporal gyrus (BA 19)</td>
<td>−28,−56,53</td>
<td>0.000</td>
<td>8.15</td>
<td>(>8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left infero-medial occipital gyrus (BA 18, 19)</td>
<td>−32,−81,4</td>
<td>0.000 (>8)</td>
<td>8.82</td>
<td>Left superior parietal lobule (BA 7)</td>
<td>−28,−56,53</td>
<td>0.000</td>
<td>8.15</td>
<td>(>8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right cerebellum</td>
<td>32,−59,−18</td>
<td>0.000 (8.05)</td>
<td>8.05</td>
<td>Right cerebellum</td>
<td>32,−59,−18</td>
<td>0.000</td>
<td>8.05</td>
<td>(>8)</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1 (continued)

Contrasts (P < 0.05 corr)

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Lexical decision activated regions</th>
<th>Talairach coordinates (x, y, z)</th>
<th>P</th>
<th>Z</th>
<th>T</th>
<th>Reading activated regions</th>
<th>Talairach coordinates (x, y, z)</th>
<th>P corr</th>
<th>T</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW2 vs. fixation</td>
<td>Supplementary motor area (BA 6)</td>
<td>0, 6, 50</td>
<td>0.000</td>
<td>6.13</td>
<td>6.23</td>
<td>Left premotor cortex (BA 6)</td>
<td>−44, 3, 51</td>
<td>0.000</td>
<td>7.02</td>
<td>6.92</td>
</tr>
<tr>
<td></td>
<td>Right middle frontal gyrus (BA 46)</td>
<td>44, 44, 21</td>
<td>0.000</td>
<td>6.04</td>
<td>6.14</td>
<td>Right superior parietal lobule (BA 7)</td>
<td>32, −52, 53</td>
<td>0.000</td>
<td>5.94</td>
<td>5.88</td>
</tr>
<tr>
<td></td>
<td>Left inferior frontal gyrus (BA 47)</td>
<td>−44, 19, −5</td>
<td>0.000</td>
<td>5.65</td>
<td>5.73</td>
<td>Left angular gyrus (BA 39)</td>
<td>−28, −65, 26</td>
<td>0.011</td>
<td>4.80</td>
<td>4.85</td>
</tr>
<tr>
<td></td>
<td>Right middle temporal gyrus (BA 21)</td>
<td>59, −23, −3</td>
<td>0.003</td>
<td>5.16</td>
<td>5.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right anterior cingulated gyrus (BA 32)</td>
<td>16, 25, 31</td>
<td>0.003</td>
<td>5.14</td>
<td>5.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right primary sensory–motor cortex (BA 4, 3, 2, 1)</td>
<td>55, −17, 47</td>
<td>0.027</td>
<td>4.65</td>
<td>4.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W3 vs. fixation</td>
<td>Left fusiform gyrus (BA 37, 19)</td>
<td>−40, −67, −9</td>
<td>0.000</td>
<td>>8</td>
<td>10.01</td>
<td>Left inferior temporal gyrus (BA 37)</td>
<td>−40, −67, −9</td>
<td>0.000</td>
<td>8.26</td>
<td>>8</td>
</tr>
<tr>
<td></td>
<td>Left primary somatosensitive area (BA 3, 2, 1)</td>
<td>−51, −28, 52</td>
<td>0.000</td>
<td>>8</td>
<td>8.24</td>
<td>Right cerebellum</td>
<td>32, −59, −18</td>
<td>0.000</td>
<td>7.00</td>
<td>6.90</td>
</tr>
<tr>
<td></td>
<td>Left superior parietal lobule (BA 7)</td>
<td>−36, −51, 58</td>
<td>0.000</td>
<td>6.51</td>
<td>6.63</td>
<td>Left supramarginal gyrus (BA 40)</td>
<td>−44, −40, 53</td>
<td>0.000</td>
<td>6.42</td>
<td>6.34</td>
</tr>
<tr>
<td></td>
<td>Right supramarginal gyrus (BA 40)</td>
<td>48, −29, 47</td>
<td>0.000</td>
<td>5.82</td>
<td>5.91</td>
<td>Left premotor cortex (BA 6)</td>
<td>−51, −2, 42</td>
<td>0.000</td>
<td>6.40</td>
<td>6.32</td>
</tr>
<tr>
<td></td>
<td>Right superior temporal gyrus (BA 22)</td>
<td>44, 40, 21</td>
<td>0.000</td>
<td>5.61</td>
<td>5.69</td>
<td>Right cerebellum</td>
<td>12, −36, −28</td>
<td>0.000</td>
<td>6.00</td>
<td>5.93</td>
</tr>
<tr>
<td></td>
<td>Left putamen</td>
<td>−16, 4, 9</td>
<td>0.001</td>
<td>5.41</td>
<td>5.49</td>
<td>Right superior parietal lobule (BA 7)</td>
<td>32, −52, 53</td>
<td>0.001</td>
<td>5.40</td>
<td>5.35</td>
</tr>
<tr>
<td></td>
<td>Right anterior cingulated gyrus (BA 32)</td>
<td>8, 21, 36</td>
<td>0.007</td>
<td>4.96</td>
<td>5.01</td>
<td>Left supplementary motor area (BA 6)</td>
<td>−4, 7, 60</td>
<td>0.002</td>
<td>5.25</td>
<td>5.21</td>
</tr>
<tr>
<td>PW3 vs. fixation</td>
<td>Left supramarginal gyrus (BA 40)</td>
<td>−51, −28, 52</td>
<td>0.000</td>
<td>>8</td>
<td>9.98</td>
<td>Left inferior frontal gyrus (BA 44)</td>
<td>55, 5, 32</td>
<td>0.005</td>
<td>5.09</td>
<td>5.05</td>
</tr>
<tr>
<td></td>
<td>Left middle occipital gyrus (BA 19)</td>
<td>−28, −81, 9</td>
<td>0.000</td>
<td>>8</td>
<td>8.90</td>
<td>Left inferior temporal gyrus (BA 37)</td>
<td>−36, −67, −9</td>
<td>0.000</td>
<td>9.79</td>
<td>>8</td>
</tr>
<tr>
<td></td>
<td>Right superior parietal lobule (BA 7)</td>
<td>32, −48, 58</td>
<td>0.000</td>
<td>6.13</td>
<td>6.24</td>
<td>Right middle frontal gyrus (BA 9)</td>
<td>28, −56, 53</td>
<td>0.000</td>
<td>6.91</td>
<td>6.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Right superior parietal lobule (BA 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Right premotor cortex (BA 6)</td>
<td>48, 2, 46</td>
<td>0.000</td>
<td>5.59</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Left lingual gyrus (BA 18)</td>
<td>−12, −81, 4</td>
<td>0.000</td>
<td>6.84</td>
<td>6.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Left middle frontal gyrus (BA 9)</td>
<td>−51, 6, 37</td>
<td>0.000</td>
<td>6.04</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Left inferior frontal gyrus (BA 44, Broca)</td>
<td>−51, 4, 33</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Right posterior cingulate gyrus (BA 31)</td>
<td>16, −73, 13</td>
<td>0.000</td>
<td>(5.82)</td>
<td>5.88</td>
</tr>
</tbody>
</table>
2.2.1. Reading and lexical decision

The anatomical regions activated during reading and lexical decision for each items’ type versus fixation cross are summarized in Table 1.

2.2.2. Words and pseudo-words

Independently of the task and stimulus length, words and pseudo-words activated a large network of common brain areas (cf. Table 1). In both words versus baseline contrast and pseudo-words versus baseline contrast, the most highly activated regions were the left fusiform gyrus (BA 37, 19) and bilaterally the extrastriate cortex (BA 18, 19) and the supramarginal gyrus (BA 40). The superior parietal lobule (BA 7) was also activated bilaterally by both types of items. The direct comparison of words versus pseudo-words and pseudo-words versus words revealed that no brain region was more strongly activated by either words or pseudo-words.

2.2.3. Length effects

Only the contrast 3-syllable pseudo-words (PW3) versus 1-syllable pseudo-words (PW1) during reading induced significant brain activations. Long pseudo-words elicited greater neural activity than short pseudo-words (cf. Table 1, PW3 vs. PW1) within the bilateral extrastriate visual cortex (BA 18, 19) and superior parietal lobule (BA 7), the left middle and inferior frontal gyri (BA 9, BA 44) and the right posterior cingulate gyrus (BA 31). None of the other contrasts (PW1 vs. PW3, W3 vs. W1, W1 vs. W3) yielded statistically significant results. In particular, silent reading of the longest words (W3) yielded no additional activation as compared to silent reading of the shortest words (W1). Fig. 2 presents the functional maps obtained by contrasting 3-syllable pseudo-words versus 1-syllable pseudo-words during reading.

None of the contrasts performed between long and short items induced significant activation during the lexical decision task.

Table 1 (continued)

<table>
<thead>
<tr>
<th>Contrasts (P < 0.05 corr)</th>
<th>Lexical decision activated regions</th>
<th>Talairach coordinates (x, y, z)</th>
<th>P</th>
<th>Z</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW3 vs. PW1</td>
<td>Left superior parietal lobule</td>
<td>−24, −59, 54</td>
<td>0.000</td>
<td>5.69</td>
<td>5.75</td>
</tr>
<tr>
<td></td>
<td>Right medial occipital gyrus</td>
<td>32, −63, −9</td>
<td>0.005</td>
<td>5.02</td>
<td>5.06</td>
</tr>
<tr>
<td></td>
<td>Right superior parietal lobule</td>
<td>32, −56, 53</td>
<td>0.017</td>
<td>4.76</td>
<td>4.79</td>
</tr>
<tr>
<td>W3 vs. W2</td>
<td>Left inferior frontal gyrus (BA 47)</td>
<td>−24, 23, 3</td>
<td>0.002</td>
<td>5.26</td>
<td>5.33</td>
</tr>
<tr>
<td></td>
<td>Left middle occipital gyrus (BA 19)</td>
<td>−20, −70, −5</td>
<td>0.006</td>
<td>5.00</td>
<td>5.06</td>
</tr>
<tr>
<td></td>
<td>Right fusiform gyrus (BA 37, 19)</td>
<td>−32, −62, −5</td>
<td>0.007</td>
<td>4.96</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>Left superior parietal lobule</td>
<td>−32, −64, 49</td>
<td>0.000</td>
<td>6.17</td>
<td>6.27</td>
</tr>
<tr>
<td></td>
<td>Left inferior frontal gyrus (BA 45)</td>
<td>−48, 28, 17</td>
<td>0.000</td>
<td>5.68</td>
<td>5.76</td>
</tr>
<tr>
<td></td>
<td>Left frontal inferior gyrus (BA 44)</td>
<td>−36, 5, 27</td>
<td>0.001</td>
<td>5.47</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>Left middle temporal gyrus (BA 21)</td>
<td>−51, −35, −2</td>
<td>0.003</td>
<td>5.16</td>
<td>5.22</td>
</tr>
<tr>
<td></td>
<td>Left inferior frontal gyrus (BA 47)</td>
<td>−44, 43, −2</td>
<td>0.008</td>
<td>4.92</td>
<td>4.97</td>
</tr>
<tr>
<td></td>
<td>Right dorso-medial frontal cortex (BA 8)</td>
<td>4, 29, 45</td>
<td>0.016</td>
<td>4.77</td>
<td>4.82</td>
</tr>
</tbody>
</table>

Contrasts (P < 0.05 uncorr) | Activated regions | Talairach coordinates (x, y, z) | P uncorr | Z | T |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PW3 vs. PW1/W3 vs. W1 inclusively masked with PW3 vs. PW1*</td>
<td>Left superior parietal lobule (BA 7)</td>
<td>−24, −56, 53</td>
<td>0.000</td>
<td>4.10</td>
<td>4.12</td>
</tr>
<tr>
<td></td>
<td>Right lingual gyrus (BA 19)</td>
<td>28, −47, 2</td>
<td>0.000</td>
<td>3.95</td>
<td>3.97</td>
</tr>
<tr>
<td></td>
<td>Left precuneus (BA 7)</td>
<td>−8, −60, 40</td>
<td>0.000</td>
<td>3.83</td>
<td>3.84</td>
</tr>
<tr>
<td></td>
<td>Left cerebellum</td>
<td>−32, −71, −22</td>
<td>0.000</td>
<td>3.69</td>
<td>3.71</td>
</tr>
<tr>
<td></td>
<td>Left middle temporal gyrus (BA 21)</td>
<td>−40, −47, 2</td>
<td>0.000</td>
<td>3.64</td>
<td>3.65</td>
</tr>
</tbody>
</table>
decision task, suggesting that cerebral activity was not affected by item length in this task.

Length effect during pseudo-word reading was significantly greater than length effect during word reading as shown by the contrast [PW3 vs. PW1]–[W3 vs. W1]. This effect was characterized by significant activations within the right lingual gyrus (BA19), left superior parietal lobule and precuneus (BA7), left middle temporal gyrus (BA21) and left cerebellum (cf. Fig. 3).

3. Discussion

Length effects on naming latency were investigated in the present study because they place important constraints on theories of reading (Ans et al., 1998; Plaut, 1998; Weekes, 1997). The analysis of reading performance revealed that naming latencies were far more affected by length for pseudo-words than for words. Only a slight length effect characterized reaction times in lexical decision, and this effect was not modulated by the items’ lexicality. Furthermore, similar length effects were obtained for words in reading and lexical decision whereas they were far stronger in reading than in lexical decision for pseudo-words. The overall behavioral findings suggest that word processing was similar in both reading and lexical decision and that processing was not particularly affected by word length as expected if words were globally processed. In contrast, pseudo-words were differently processed in reading and lexical decision. The strong length effect observed in pseudo-word reading suggests that processing relied on a serial mechanism. In contrast, pseudo-word length only minimally influenced reaction times in lexical decision as expected if decision was based on global processing.

In line with previous studies (Weekes, 1997), the present results are not a priori compatible with models which assume that words and pseudo-words are similarly processed, whatever their length, in both reading and lexical decision (Harm and Seidenberg, 1999; Plaut et al., 1996; Seidenberg and McClelland, 1989; see Plaut, 1998 for an attempt to account for letter length effects within the PDP framework). They are however in keeping with the dual-route model and the ACV multitrace model which both assert that a serial mechanism is involved in pseudo-word reading in contrast to familiar words which are globally processed. The simulations conducted on the ACV98 network paralleled the behavioral data in showing a strong length effect on naming latencies for the pseudo-words only. As expected, simulations revealed the absence of any length effect in both reading and lexical decision for words and in lexical decision for pseudo-words. Accordingly, the slight and unreliable length effect experimentally obtained on both words and pseudo-words in reading and lexical decision might reflect some more general difficulty to visually process items extending up to 11 letters.

Investigation of the brain regions involved in word and pseudo-word processing relative to fixation cross revealed that a large network of common brain areas was activated for both types of items. The activated regions corresponded to those typically reported as being activated in reading and/or lexical decision (Cohen et al., 2002; Pammer et al., 2004; see Price, 1997 or Fiez and Petersen, 1998 for a review). Results are also consistent with previous studies showing that similar regions are activated during the processing of all types of orthographic strings (Chen et al., 2002; Mechelli et al., 2003; Petersen et al., 1990; Tagamets et al., 2000). The direct contrasts between words and pseudo-words, independent of item length, failed to reveal significant differences in the cortical regions involved in the processing of words and pseudo-words in reading and lexical decision. This finding differs from a number of previous reports of activation differences between words and pseudo-words in reading (Jobard et al., 2003; Hagoort et al., 1999; Herbster et al., 1997) and lexical decision (Fiebach et al., 2002). However, studies comparing words and pseudo-words have yielded inconsistent results that might in part be due to methodological differences (Mechelli et al., 2003; Price et al., 1996). Furthermore, the sublexical characteristics of items—such as letter length, number of syllables or syllable frequency—known to
have an impact on processing (Hutzler et al., 2005; Indefrey et al., 1997; Levelt and Wheeldon, 1994) were not always systematically controlled.

More interestingly, the present findings revealed that brain activation was affected by pseudo-word length in reading whereas no difference in brain activity was observed when contrasting long and short words in either reading or lexical decision. Critically, in reading, the current analysis revealed that brain activation elicited by length effects for pseudo-words was significantly higher than the activation corresponding to length processing for real words. These results closely parallel those found in the behavioral analysis and in the simulations. At the cerebral level, length effects for pseudo-words in reading were mostly characterized by increased cerebral activity in the brain regions involved in visuo-spatial and visual attentional processing.

In silent reading, long pseudo-words elicited greater cerebral activity than short pseudo-words within the visual extrastriate cortex. Bilateral activation of the extrastriate cortex (BA 18, 19) is typically related to visual processing of orthographic strings (Fiez and Petersen, 1998; Hagoort et al., 1999; Panner et al., 2004; Tagamets et al., 2000). Indefrey and collaborators (1997) explicitly investigated the effect of string-length on the activation pattern observed in this region. Activations in the medial extrastriate cortex were found for both pseudo-words and false-font strings when contrasted with single characters. In contrast, activations disappeared when pseudo-words were compared to false-fonts matched in length. The authors concluded that the length difference alone was sufficient to account for extrastriate activation, suggesting that this region was primarily sensitive to the physical characteristics of the input stimuli. However, in the present study, increased activation of the extrastriate regions was obtained by contrasting long with short pseudo-words but not by contrasting long with short real words in reading. Furthermore, item length had no impact on extrastriate activation in lexical decision. Such results do not support the hypothesis that differences in physical length are responsible for medial extrastriate activations.

It is noteworthy however that the right lingual gyrus (BA19) alone was significantly more activated during pseudo-word length processing as compared to word-length processing. Tagamets et al. (2000) found that the volume of activity in the right medial occipital gyrus increased as the stimuli progressed from most familiar to least familiar items. Stronger activation of this region for long pseudo-words as compared to short pseudo-words might therefore result from additional demands associated to the visual processing of unfamiliar multi-syllabic pseudo-words during reading. Increased activation of the extrastriate cortex might also result from the fact that perception-related occipital activations were enhanced by visual attention (Clark et al., 1997; Corbetta et al., 1990; Kanwisher and Wojciulik, 2000; Karstner et al., 1998). Activation of the superior parietal lobule bilaterally (BA 7), of the left middle frontal gyrus (BA 9) and of the right posterior cingulate gyrus (BA 31) does suggest that attentional processes are more strongly involved during analytic processing of long than short pseudo-words. The
role of the parietal lobe, particularly BA 7 area, for initiating and maintaining visual attention and for shifting the focus of attention from one element of interest to another is well documented (for a review Lynch et al., 1977; Vidyasagar, 1999, 2004). The superior parietal area is further involved in visuospatial analysis and attention (for a review Kanwisher and Wojciulik, 2000) and is sensitive to the amount of attention allocated to a particular task (Fiez et al., 1995). Tagamets et al. (2000) argued that activation of the superior parietal cortex (BA 7) might reflect spatial processing that is necessary for ordering the symbols in unfamiliar strings and/or greater effort in processing novel unfamiliar stimuli. Specific activation of the left superior parietal cortex for long pseudo-word reading might therefore be related to the properties of the task which requires spatial processing allowing serial shifts of attention from one syllable to another and ordering the syllables into a single string.

It might be argued that the recruitment of areas involved in visual spatial attention rather reflects differences in eye movements that might also account for the activity increase in the cerebellum and extrastriate visual areas (Mesulam, 1981, 1990, 1998; Konen et al., 2004). However, data suggesting the absence of overt eye movements are twofold. First, item presentation was limited to 200 ms in the fMRI experiment, thus preventing overt saccadic movements. Second, the absence of activation of the frontal eye field (FEF) area—in involved in the motor programming of saccadic movements (Goldberg, 2000)—also suggests that overt eye movements did not occur when reading long pseudo-words. The absence of FEF activation during long pseudo-word reading further suggests that only reflexive, automatic spatial attention was engaged. It is further worth noting that our interpretation in attentional terms does remain even if eye movements were overtly observed. Indeed, if they reflected bottom–up processes, eye movements should occur in both reading and lexical decision for both words and pseudo-words, so reflecting the adaptation of the oculomotor system to item length. Against this interpretation, activity increase in the brain regions potentially related to overt eye movements was only observed when processing long pseudo-words in reading. This implies that eye movements if they had occurred should be rather viewed as reflecting top–down processes linked to the allocation of spatial attention during reading (see Prado et al., in revision for converging data).

The present study further revealed that the left inferior frontal gyrus (BA 44) was more strongly activated during long than short pseudo-word processing. This region is typically associated with phonological processing (Démonet et al., 1992; Price, 1998; Price et al., 2003; Pugh et al., 1996; Rumsey et al., 1997); it is in particular involved in the phonological recoding of orthographic input strings at a sublexical level (Fiez and Petersen, 1998; Hagoort et al., 1999; Pummer et al., 2004). Increased activation in the left inferior frontal gyrus might suggest that phonological analysis was more strongly involved in the processing of long than short pseudo-words. Such an increased activity might in particular reflect stronger involvement of verbal working memory (Paulesu et al., 1993; Cabeza and Nyberg, 2000, for a review) when a novel articulatory rehearsal program is effortfully assembled and initiated (Naveh-Benjamin and Jonides, 1984; Chein and Fiez, 2001). However, activity for long pseudo-words vs. short pseudo-words elicited no more activity in area 44, as compared to long words vs. short words. This latter finding suggests a trend for Broca’s area to increase its activity with items’ length, be they words or pseudo-words. Such an activity increase might thus in part reflect the additional load put on sub-vocal articulation during the processing of long letter strings.

4. Conclusion

The present study reports converging evidence from both behavioral, neuroimaging and simulation data in support of the specific involvement of a serial mechanism in pseudo-word reading. The behavioral data highlight the existence of strong length effects on naming latencies for pseudo-words only. The neuroimaging results parallel these behavioral findings in showing that some brain regions are specifically involved in the processing of long pseudo-words as compared to short pseudo-words in silent reading but not in lexical decision. Silent reading of long pseudo-words specifically engages a network of brain regions involved in visual and visual attention processing. The present findings thus place constraints on theories of word reading in suggesting the involvement of a serial mechanism based on visual attentional processing in long pseudo-word reading.

5. Experimental procedures

5.1. Experiment 1

5.1.1. Participants

Forty-four undergraduate students (40 females, 4 males) from the University of Chambéry (France) participated in the experiment. They were given course credits for their participation and were randomly selected for doing either the reading task (for half of them) or the lexical decision task (for the other half). The participants were 20 years and 2 months old on average. They were native speakers of French and reported neither visual nor reading disorders. All of them gave informed written consent prior to participation in the study.

5.1.2. Material

The complete set of items consisted of 348 items (174 French words and 174 pseudo-words) including 144 experimental stimuli, 168 fillers and 36 practice items. Seventy-two words and 72 pseudo-words were selected as experimental stimuli (they are listed in Appendix A). One third of the target words and pseudo-words were 1-syllable long, one-third had two syllables and the remaining third had three syllables. The words were selected on the basis of the BRULEX lexical database for French (Content et al., 1990). They were of medium frequency (mean log frequency = 284.5; standard deviation = 34.02; range = from 186 to 390). The three sets of 1-syllable, 2-syllable and 3-syllable words were closely equated in frequency (m = 284.5, SD = 34.02; m = 281.7, SD = 23.3 and m = 295.3, SD = 39.5 respectively). Moreover, the same number
of words (10 out of 24) with a final mute «e» was included in
each syllable length set. In French indeed, words ending with a
mute «e» are ambiguous as to their number of syllables.
Although it is clear that words like “tapis” /tapi/ or “cinéma” /
sinema/ have 2 and 3 syllables, respectively, a word like “porte” /port/ (which can be pronounced either /poR/ or /poRoe/) can
be considered as either a 1- or 2-syllable word. Given that
words ending with a mute “e” are quite frequent in French and
could not be discarded, their number was closely equated in
each set of syllable length. Finally, all the experimental words
began with a stop consonant (/k/, /d/, /g/, /p/, /t/ or /b/) so that
differences in naming latencies cannot follow from differences
across conditions in the ability of the items to trigger the vocal
key. The 72 experimental pseudo-words were created from the
word stimuli. Polysyllabic pseudo-words were build up by
recombining the syllables of the target words with the
constraint that syllable position remained unchanged (e.g.,
the pseudo-word «crovier» was generated using the first
syllable of the word «crotchet» and the second syllable of the
word «gravier»). The letters at syllable boundaries were
checked to conform to the French phonotactic rules. Mono-
syllabic pseudo-words were generated by recombining the
syllabic components (corresponding to the onset, nucleus and
coda) from mono-syllabic words. The letters and syllables
taken from words were occasionally modified in order for the
pseudo-word to be orthographically and phonologically legal.
In these cases, consonants were systematically substituted by
consonants and vowels by vowels; so, that syllabic structure
remained identical in words and pseudo-words. The experi-
mental words and pseudo-words of each syllable length were
equated in number of letters – mean number of letters for 1-
syllable words and pseudo-words respectively: 4.6 (SD = 0.7;
range: 4 to 6) and 4.8 (SD = 0.9; range: 4 to 7); for 2-syllable words
and pseudo-words: 7 (SD = 0.8; range: 5 to 9) and 7 (SD = 0.9;
range: 5 to 9); for 3-syllable words and pseudo-words: 9.3
(SD = 0.8; range: 8 to 11) and 9.4 (SD = 0.9; range: 8 to 11).
Similarly as words, all experimental pseudo-words began with
a stop consonant and 10 out of 24 ended with a mute «e» in
each set of syllable length. The 168 fillers included 84 words
and 84 pseudo-words of 1, 2 or 3 syllables. Half of them ended
with a mute «e». The filler words were selected in such a way
that the total set of words (targets and fillers) was represen-
tative of French written words. They had a mean log frequency
of 350, and most of them began with either a vowel or a non-
stop consonant. The filler pseudo-words were created from the
filler words as the experimental pseudo-words. As the items
increased in length, their number of orthographic neighbors
decreased but orthographic neighborhood size remained very
low in all length sets. Orthographic neighborhood was defined
as the number of same length words differing from a target
(word or pseudo-word) by a single letter (Coltheart et al., 1977);
names or first names included in the Brullex database alone were taken in the
analysis. On average, the number of neighbors was 1.08, 0.50 and 0.33 for 1-syllable,
2-syllable and 3-syllable words respectively; it was 1.33, 0.17
and 0 for 1-syllable, 2-syllable and 3-syllable pseudo-words, respectively. In all cases, neighborhood size remained very
low.
In the reading task, words and pseudo-words were pre-
sented in 4 blocked lists. The order of the word and pseudo-
word lists was counterbalanced so that the session began with
a word list for half of the participants and with a pseudo-word
list for the other half. Each sub-list began with 9 practice items
(3 words or pseudo-words of each syllable length) followed by
78 items (36 experimental items and 42 fillers) of 1, 2 and 3
syllables that were randomly presented. Each sub-list was
equated in frequency, number of items of each syllable length
and number of items ending with a mute “e”.
For the lexical decision task, the same 348 items were
divided in two equivalent sub-lists. Each sub-list began with
18 practice items (3 words and 3 pseudo-words of each syllable
length) followed by 156 randomly presented items including
72 experimental items (36 words and 36 pseudo-words of 1, 2
and 3 syllables) and 84 fillers (42 words and 42 pseudo-words
of 1, 2 and 3 syllables).

5.1.3. Design and procedure
Stimulus presentation and reaction time recording were
controlled by the E-prime software which was run on a Dell
PC computer with a 17” color monitor. The participants were
seated 50 cm from the computer monitor. The stimuli were
displayed in lowercase letters (bold Courier new 22) in the
center of the computer screen. They were presented in black
on a white screen. Their angular size varied from 2.4° to 6.1°
for mono-syllabic items, from 4.1° to 7.9° for the bi-syllabic items
and from 6.8° to 9.5° for the 3-syllable items.
In the reading task, each trial began with a fixation point
displayed at the center of the computer screen for 500 ms
followed by a white screen for 150 ms. The stimuli (word or
pseudo-word) were presented one at a time and remained on
the screen until the participant began to speak into a
microphone connected to a voice key. They disappeared after
a 2000 ms deadline when no response was given. After
the participant’s response, a new white screen was displayed for
1000 ms before the next trial. During this interval, the experimenter recorded naming accuracy by pressing a key-
board button. The real-time clock in the computer timed the
response latencies in milliseconds from the appearance of the
stimulus to the onset of the subject’s response. The partici-
pants were instructed to read each item aloud as accurately
and as quickly as possible.
In the lexical decision task, the experimental procedure
was the same but the participants were instructed to indicate
as accurately and as quickly as possible whether the printed
item was a real word or a pseudo-word. They responded by
pressing keyboard buttons (response YES, right hand, key “w”;
response NO left hand, key “w”).

5.2. Experiment 2

5.2.1. Participants
Twenty healthy volunteers (14 males, 6 females) participated in
the fMRI experiment; they were 22 years and 6 months old
on average, had a university education and were fully right-
handed according to the Edinburgh handedness inventory
(Olfield, 1971). All were drug-free, had no neurological or
psychiatric history and had normal anatomical MRIs. All
participants gave their written informed consent. Brain
activity was recorded during reading for 12 participants and
during lexical decision for the other 8 participants.
5.2.2. Stimuli and paradigm
A pseudo-randomized ER-fMRI paradigm with six types of stimuli (words composed of 1, 2 and 3 syllables and pseudo-words composed of 1, 2 and 3 syllables) was used. The same 144 words and pseudo-words used in Experiment 1 were presented during two fMRI sessions. In addition to the experimental stimuli, 34 null events (ten of them at the end of the session) composed of a blank screen and a fixation cross on the center of the screen were also included. Each stimulus was presented for 200 ms followed by a white screen. A stimulus (word, pseudo-word or null event) was displayed every 2 s. The order of presentation of the stimuli was optimized (Friston et al., 1999). During one fMRI session, the twelve participants assigned to the reading task were instructed to read each item silently, without articulating and vocalizing. The eight participants assigned to the lexical decision task had to judge whether each presented stimulus was a real word or a pseudo-word. They gave manual motor responses by means of two response keys pressed with the index (for words) and with the middle finger (for pseudo-words). The stimuli were generated by means of Psycospe V.1.1 (Carnegie Mellon Department of Psychology) running on a Macintosh computer (Power Macintosh 9600). They were transmitted into the magnet by means of a video projector (Eiki LC 6000). The projection screen was located behind the magnet, and the mirror was centered above the patient’s eyes. The design was such that the angular size of stimuli was the same as in Experiment 1.

5.2.3. MRI acquisition
Functional MR imaging was performed on a 1.5 T MR imager (Philips NT) with echo-planar (EPI) acquisition. Twenty-three adjacent, axial slices (thickness 5 mm each) were imaged. The imaging volume was oriented in parallel to the bicommissural plane. Positioning of the image planes was performed on scout images acquired in the sagittal plane. An EPI MR pulse sequence was used. The major MR acquisition parameters of the EPI sequence were: TR = 2000 ms, TE = 45 ms, flip angle = 90°, field-of-view = 256 × 256 mm², imaging matrix = 6 × 64, reconstruction matrix = 12 × 128. Subsequent to the functional scan, a high resolution 3D anatomical MR scan was obtained from the volume previously examined.

5.2.4. Data processing
Data analysis was performed based on the general linear model (Friston et al., 1995) for event-related designs, implemented in SPM’99 software (Welcome Department of Cognitive Neurology, London, UK) running on a Unix workstation under the MATLAB environment (Mathworks, Sherbon, USA).

5.2.4.1. Spatial pre-processing. MR images were processed using the following steps. First, during the slice timing step, the functional volumes were corrected for sampling bias effects caused by the different time acquisition of each slice composing the functional volume, relative to the hemodynamic response. In the second step, the realignment or motion correction was applied by using rotations and translations in order to realign each functional volume to the first acquired one. In a third step, the anatomical volume was spatially normalized into the Talairach and Tournoux (1988) reference space using as template a representative brain from the Montreal Neurological Institute series. The anatomical normalization parameters were subsequently applied to functional volumes. Finally, in conformity with the assumption that data are normally distributed, the functional images were spatially smoothed by using a Gaussian filter (8 mm width).

5.2.4.2. Statistics. For each type of individual events, regressors of interest were created by convolving a delta function at each event onset with a canonical haemodynamic response function. A fixed effect group analysis was performed. Among significant isolated voxels (voxelwise threshold of P < 0.001), only the clusters that were composed of at least 5 adjacent voxels and were statistically significant above a certain threshold (P < 0.05 corrected; except for the [PW3 vs. PW1]-[W3 vs. W1] contrast for which an uncorrected P < 0.005 was used, according to the method described by Friston et al., 1995, for the validation of a priori hypotheses in terms of activated regions) were retained.

Appendix A. List of the experimental items

1-syllable words: Biais brut clerc clos craie drap golf gris grue prêt tait test truie crabre crépe croûte grade grippé guêpe pioche quille tause tresse.
2-syllable words: beignet brasier clameur convoi crapaud crochet dauphin gradin gravier tambour tennis torrent transfert tuyau brigade clôture critère grillage guirlande guitare parade pillage présage.
3-syllable words: toiture bâtiment bigorneau brusquerie complément continent garanite guéridon président prévention processus protection provision tourbillon tribunal crocodile dépendance gratitude porcelaine précipice préfecture projectile propagande tolérance trajectoire.
1-syllable pseudo-words: bial brost cêt cie dauc gat grais guerc praie psau quent quos talf thoeu crite crouche crupe grêde grüpe pièpe teille trope tesse.
2-syllable pseudo-words: bravoi clonnis crowier dountain graféet guisier pagon plasson prédin toipaux toureux tournau trachon tuchet chaillage clavage contare citrugé granade grisarie guirradte pitège teillare trasture.
3-syllable pseudo-words: barantion belluquet croplression gajecteur grelanton guésition palméetue poufquen prébilin prépamet proscaté provendon toigment traspension gracipiile brustidance comburance déritude porquenale préjectoire prétilaine procégnage tourjectine trilédence.

REFERENCES

Prado, C., Dubois, M., Marendaz, C., Valdois, S., submitted for publication. Children’s visual attentional skills predict number of fixations during reading.